
Chapter 7

Einstein’s Field Equations - The
Main Goal of The Course

7.1 Introduction

In order to have a complete theory of gravity, we need to know

• How particles behave in curved spacetime.

• How matter curves spacetime.

The first question is answered by postulating that free particles [ i.e. no force

other than gravity ] follow timelike or null geodesics. We will see later that this is

equivalent to Newton’s law F = −m∇Φ in the week field limit [ Φ/c2 # 1 ].

The second requires the analogue of ∇2Φ = 4πGρ. We first consider the vacuum

case [ ρ = 0 ] ⇒ ∇2Φ = 0.

The easiest way to do this is to compare the geodesic deviation equation de-

rived in the last section with its Newtonian analogue. In Newtonian theory the

acceleration of two neighboring particles with position vectors x and x + ξ are:

d2xi

dt2
= −∂Φ(x)

∂xi
,

d2(xi + ξi)

dt2
= −∂Φ(x + ξ)

∂xi
, (7.1)

so the separation evolves according to:

d2ξi

dt2
=

∂Φ(x)

∂xi
− ∂Φ(x + ξ)

∂xi

=
∂

∂xi
(Φ(x) − Φ(x + ξ)) . (7.2)
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This gives us
d2ξi

dt2
= − ∂2Φ

∂xi∂xj
ξj , (7.3)

since

φ(x + ξ) − Φ(x) = ξj ∂φ

∂xj
. (7.4)

This clearly is analogous to the geodesic deviation equation

∇V∇Vξ
α = Rα

µνβV µV νξβ , (7.5)

provided we relate the quantities − ∂2Φ
∂xi∂xj and Rα

µνβV µV ν

Both quantities have two free indices, although the Newtonian index runs from

1 to 3 while in the General Relativity case it runs from 0 to 3.

The Newtonian vacuum equation is ∇2Φ = 0 which implies that

∂2Φ
∂xi∂xi = 0 , (7.6)

so we can write

Rα
µναV µV ν = 0 . (7.7)

Since V is arbitrary we end up with

Rµν = 0 . (7.8)

These are the vacuum Einstein field equations.

7.2 The non - vacuum field equations

The General Relativity version of ∇2Φ = 4πGρ must contain T µν rather than ρ

since we saw in Special Relativity that ρc2 is just the 00 component of the energy -

momentum tensor. This is expected anyway since in General Relativity all forms

of energy [ not just rest mass ] should be a source of gravity.

To get the General Relativity version of the equations involving T µν we just

replace the Minkowski metric ηαβ by gαβ and the partial derivative (, ) by the

covariant derivative (; ). For example the energy - momentum tensor for a perfect

fluid in curved space time is

T µν =
(

ρ+
p

c2

)

UµUν + pgµν , (7.9)
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and the conservation equations become

T µν
;ν = 0 . (7.10)

In the above we have just used the strong form of the Equivalence Principle,

which says that any non - gravitational law expressible in tensor notation in Special

Relativity has exactly the same form in a local inertial frame of curved spacetime.

We expect the full [ non - vacuum ] field equations to be of the form

O(g) = κT , (7.11)

where O is a second order differential operator which is a 0/2 tensor [ since T is

the stress energy tensor ] and κ is a constant. The simplest operator that reduces

to the vacuum field equations when T = 0 takes the form

Oαβ = Rαβ + µgαβR . (7.12)

Now since T αβ
;β = 0 [ T αβ

,β = 0 in Special Relativity ], we require Oαβ
;β = 0.

Using gαβ
;β = 0 gives

(

Rαβ + µgαβR
)

;β
= 0 . (7.13)

Comparing this with the double contracted Bianchi identities

Gαβ
;β = 0 , (7.14)

we see that the constant µ has to be µ = − 1
2
. Thus we are led to the field equations

of General Relativity:

Rαβ − 1
2
gαβR = κT αβ , (7.15)

or

Gαβ = κT αβ . (7.16)

In general we can add a constant Λ so the field equations become

Rαβ − 1
2
gαβR + Λgαβ = κT αβ . (7.17)

In a vacuum T αβ = 0, so taking the trace of the field equations we get

Rα
α − 1

2
Rgα

α + Λgα
α = 0 . (7.18)
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Since gα
α = 4 and the Ricci scalar R = Rα

α we find that R = 4Λ, and substituting

this back into the field equations leads to

Rαβ = Λgαβ . (7.19)

We recover the previous vacuum equations if Λ = 0. Sometimes Λ is called the

vacuum energy density.

We have ten equations [ since Rαβ is symmetric ] for the ten metric components.

Note that there are four degrees of freedom in choosing coordinates so only six

metric components are really determinable. This corresponds to the four conditions

Gαβ
;β = 0 , (7.20)

which reduces the effective number of equations to six.

It is very important to realize that although Einstein’s field equations look

very simple, they in fact correspond in general to six coupled non - linear partial

differential equations.

7.3 The weak field approximation

We have to check that the appropriate limit, General Relativity leads to Newton’s

theory. The limit we shall use will be that of small velocities v
c
# 1 and that

time derivatives are much smaller than spatial derivatives. There are two things

we must do:

• We have to relate the geodesic equation to Newton’s law of motion

[ i.e. the second law ].

and

• Relate Einstein’s field equations to the Newton -Poisson equation.

Let’s assume that we can find a coordinate system which is locally Minkowski [ as

demanded by the Equivalence Principle ] and that deviations from flat spacetime

are small. This means we can write

gαβ = ηαβ + εhαβ , (7.21)
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where η is small. Since we require that gδβgαβ = δα
δ, the inverse metric is given by

gαβ = ηαβ − εhαβ . (7.22)

To work out the geodesic equations we need to work out what the components of

the Christoffel symbols are:

Γγ
βµ = 1

2
gαγ (gαβ,µ + gαµ,β − gβµ,α) . (7.23)

Substituting for gαβ etc. in terms of hαβ we obtain

Γγ
βµ = 1

2
εηαγ (hαβ,µ + hαµ,β − hβµ,α) . (7.24)

The geodesic equations are

d2xγ

dτ 2
+ Γγ

βµ
dxβ

dτ

dxµ

dτ
= 0 . (7.25)

But for a slowly moving particle τ ≈ t so

d2xγ

dt
+ Γγ

βµ
dxβ

dt

dxµ

dt
= 0 . (7.26)

Also dxi

dt
= O(ε), so we can neglect terms like Γγ

ij
dxi

dt
dxj

dt
. The geodesic equation

reduces to
d2xγ

dt2
+ Γγ

00
dx0

dt

dx0

dt
= 0 , (7.27)

so the “space” equation (three - acceleration) is

d2xi

dt2
+ Γi

00
dx0

dt

dx0

dt
= 0 . (7.28)

Since dx0

dt
= c we get

d2xi

dt2
= −c2Γi

00 . (7.29)

Now

Γi
00 = 1

2
ε (hi0,0 + hi0,0 − h00,i)

≈ −1
2
εh00,i , (7.30)
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where we have neglected time derivatives over space derivatives. The spatial

geodesic equation then becomes

d2xi

dt2
= c2

2
εh00,i = c2

2
ε∇ih00 . (7.31)

But Newtonian theory has
d2xi

dt2
= −∇iΦ , (7.32)

where Φ is the gravitational potential. So we make the identification

g00 = −
(

1 +
2φ

c2

)

. (7.33)

This is equivalent to having spacetime with the line element

ds2 = −
(

1 +
2φ

c2

)

c2dt2 +

(

1 − 2φ

c2

)

(

dx2 + dy2 + dz2
)

. (7.34)

This is what we deduced using the Equivalence Principle in section 4.5.

Let’s now look at the field equations [ with Λ = 0 ]:

Rαβ − 1
2
gαβR = κTαβ . (7.35)

Taking the trace we get

R − 2R = κT α
α = κT

⇒ R = −κT . (7.36)

This allows us to write the field equations as

Rαβ = κ
[

Tαβ − 1
2
gαβT

]

. (7.37)

Let us assume that the matter takes the form of a perfect fluid, so the stress - energy

tensor takes the form:

Tαβ =
(

ρ+
p

c2

)

UαUβ + pgαβ . (7.38)

Taking the trace gives

T ≡ T α
α = −c2

(

ρ+
p

c2

)

+ 4p , (7.39)
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so the field equations become

Rαβ = κ
(

ρ+
p

c2

)

UαUβ +
1

2
κ
(

ρ− p

c2

)

c2gαβ . (7.40)

The Newtonian limit is ρ >> p
c2

. This gives

Rαβ = κρUαUβ + 1
2
κρc2gαβ . (7.41)

Look at the 00 component of these equations:

R00 = κρc2 − 1
2
κρc2

= 1
2
κρc2 (7.42)

to first order in ε. Now

Rαβ = Γµ
αβ,µ − Γµ

αµ,β (7.43)

to first order in ε. The (0, 0) component of this equation is

R00 = Γµ
00,µ − Γµ

0µ,0 , (7.44)

and since spatial derivatives dominate over time derivatives, we get

R00 = Γi
00,i . (7.45)

So the field equations are

R00 = Γi
00,i = −1

2
εh00,ii = −1

2
κρc2 . (7.46)

This is just

∇2φ = 1
2
κρc4 . (7.47)

Comparing this with Poisson’s equation:

∇2φ = 4πGρ , (7.48)

we see that we get the same result if the constant κ is

κ =
8πG

c4
. (7.49)

We can now use this result to write down the full Einstein field equations:

Rαβ − 1
2
gαβR + Λgαβ = 8πG

c4
Tαβ . (7.50)
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Figure 7.1: A SUMMARY OF WHAT WE HAVE DONE : −) =


